
Serie 02 - Solution

Preamble

Dopant Ionization: Thermal Dependency

During the course, you have learned that the electron and hole density is ob-
tained by integrating the probability of carriers having a certain energy, de-
scribed by the Fermi-Dirac distribution function, with the density of states for
that energy.

Figure 1: Representation of donor and acceptor states in the energy band dia-
gram of a semiconductor.

From an energy perspective, a donor or acceptor is an atom with an ioniza-
tion energy located in the forbidden band but near the conduction or valence
level. A donor typically has an ionization energy ED close to the conduction
band. For a reasonable doping level ND, the density of states provided by the
dopant can be approximated as a Dirac function at ED multiplied by the dopant
concentration. Additionally, we need to account for the donor degeneracy fac-
tor, denoted as βd, to consider the possibility of multiple ionization pathways.
The Fermi-Dirac distribution function is still used to describe the probability
of carriers having a certain energy. Therefore, the ionized donor concentration
can be calculated as follows:

N+
D =

ND

1 + βd · e
Ef−ED

kT

(1)

It is common to express the absolute difference between the conduction level
and the ionization level as Ed for donors. A similar approach can be applied to
acceptors, resulting in:

N−
A =

NA

1 + βa · e
EA−Ef

kT

(2)

Once again, it is common to express the absolute difference between the Valence
level and the ionization level as Ea in this case.
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Given constants

k = 1.3806504 · 10−23 [J/K]
q = 1.6021765 · 10−19 [C]

Exercise 01

Calculate the intrinsic carrier concentration of GaAs substrate at temperatures
T1 = 300 [K] and T2 = 450 [K]. Given the conduction and valence band density
of states at T1 as Nc = 4.7 · 1017

[
cm−3

]
and Nv = 7 · 1018

[
cm−3

]
, respectively,

assuming they follow a thermal dependency law of T 3/2. For this exercise, we
assume the band-gap of GaAs, Eg, to be temperature independent with a value
of 1.42 [eV ].

Solution

As we have all the values, we will start by calculating the intrinsic carrier con-
centration of GaAs at T1. For this purpose, we will use the following formula
from the course:

n2
i = NvNce

−Eg
kT (3)

This formula is applicable to non-degenerate semiconductors, which means semi-
conductors with a Fermi level located inside the bandgap (which is always the
case in this course). While this formula holds true, it is important to pay at-
tention to the units used. In this case, we provide the Boltzmann constant in
joules per Kelvin and the bandgap in electron volts. Therefore, you need to ei-
ther convert the bandgap to joules or the Boltzmann constant to electron volts.
In semiconductor physics, it is preferable to work with electron volts. We will
convert the Boltzmann constant as follows:

kev =
kj
q

≈ 86.2

[
µeV

K

]
(4)

where q represents the elementary charge. And therefore:

n2
i = NvNce

−Eg
kT1 ≈ 4.59 · 1012

[
cm−6

]
(5)

ni ≈ 2.14 · 106
[
cm−3

]
(6)

In the exercise data, it is stated that Nc and Nv follow a thermal dependency
law of T 3/2. Although this may not hold true for all temperatures, in the
temperature range of interest, they can be expressed as:

Nc/v (T ) = αc/v · T
3
2 (7)
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Since we know Nc/v (T1) (given in the exercise), we can determine Nc/v (T2).

αc/v =
Nc/v (T1)

T
3
2
1

⇒ Nc/v (T2) = Nc/v (T1) ·
T

3
2
2

T
3
2
1

(8)

Therefore:

Nc (T2)Nv (T2) = Nc (T1)Nv (T1) ·
(
T2

T1

)3

≈ 1.11 · 1037
[
cm−6

]
(9)

and finally:

n2
i = Nc (T1)Nv (T1) ·

(
T2

T1

)3

e
−Eg
kevT2 ≈ 1.39 · 1021

[
cm−6

]
(10)

ni ≈ 3.72 · 1010
[
cm−3

]
(11)

Exercise 02

Calculate the concentration of holes at thermal equilibrium in a silicon sample
at T2 = 400 [K] with a Fermi level above the valence band by approximately
0.27 [eV ]. The valence band density of states of silicon is given at T1 = 300 [K]
as Nv = 1.04 · 1019

[
cm−3

]
, and it follows a thermal dependency law of T 3/2.

Solution

During the course, you learned that the hole density can be expressed as follows:

p = Nv (T ) · e−
Ef−Ev

kT (12)

As previously assumed in Exercise 01, Nv follows a thermal dependency law
of T 3/2, and we know Nv (T1). We apply a similar reasoning to find Nv (T2):

Nv (T2) = Nv (T1) ·
(
T2

T1

) 3
2

≈ 1.6 · 1019
[
cm−3

]
(13)

In the exercise data, it is stated that the Fermi level is 0.27 [eV ] above the
valence band. Therefore:

Ef − Ev = 0.27 [eV ] (14)

Finally, we just need to perform the numerical application of Eq. 12:

p = Nv (T ) · e−
Ef−Ev

kT ≈ 6.35 · 1015
[
cm−3

]
(15)

3



Exercise 03

We consider a sample of silicon at T = 300 [K] with conduction band and valence
band densities of states Nc = 2.8 · 1019

[
cm−3

]
and Nv = 1.04 · 1019

[
cm−3

]
at

this temperature. We assume a Fermi level is lower than the conduction band by
approximately 0.25 [eV ], and the silicon band gap is Eg = 1.12 [eV ]. Calculate
the electron and hole densities, and compare them with the intrinsic density.

Solution

During the course, you learned that the electron and hole density can be ex-
pressed as follows:

p = Nve
−

Ef−Ev

kT (16)

n = Nce
−

Ec−Ef
kT (17)

In the exercise data, it is stated that the Fermi level is 0.25 [eV ] below the

Figure 2: Representation of the energy band diagram.

conduction band. Therefore:

Ec − Ef = 0.25 [eV ] (18)

We also know that the band-gap can be defined as:

Eg = Ec − Ev = 1.12 [eV ] (19)

For this reason, we can find:

Ef − Ev = Eg − (Ec − Ef ) = 0.87 [eV ] (20)

We just have to perform the numerical application of Eq. 16 with Eq. 20:

p = Nve
−

Ef−Ev

kT ≈ 2.52 · 104
[
cm−3

]
(21)

We just have to perform the numerical application of Eq. 17 with Eq. 18:

n = Nce
−

Ec−Ef
kT ≈ 1.77 · 1015

[
cm−3

]
(22)
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Exercise 04

We consider a p-type silicon sample doped with boron at a concentration of
NA = 1016

[
cm−3

]
. The energy difference between the valence level Ev and

the acceptor ionization level EA is Ea = 45 [meV ]. The impurity level degen-
eracy factor is βa = 4 in this case. Find the temperature at which 90% of
the acceptor impurities are ionized. For silicon at T = 300 [K] the conduction
band densities of states Nc = 2.8 · 1019

[
cm−3

]
and the valence band densities

of states Nv = 1.04 ·1019
[
cm−3

]
, and follows a thermal dependency law of T 3/2.

Hint: use the folowing approximation:

NA −N−
A =

NA

1 + 1
βa

· e
Ef−EA

kT

≈ βaNA · e−
Ef−EA

kT (23)

Solution

Our first instinct is to rewrite Eq. 23 as the fraction of non-ionized dopants
over the total dopant concentration and solve for it:

NA −N−
A

NA
=

1

1 + 1
βa

· e
Ef−EA

kT

(24)

However, we quickly realize that we do not know the Fermi level. Therefore, we
need to find a mathematical approach to extract it. In this case, since 90% of
the acceptors are ionized:

N−
A = Na · 0.9 = 9 · 1015 (25)

We can use the approximation developed in the To Go Further subsection
of Exercise 01 in the solution of Series 01 to determine the hole carrier
concentration p0:

N−
A ≫ ni ⇒ p0 ≈ N−

A (26)

We can now express NA as follows:

p0 +NA −N−
A ≈ NA (27)

Since 90% of the acceptors are ionized, 10% remain non-ionized. We now rewrite
the fraction of non-ionized dopants from Eq. 24:

NA −N−
A

p0 +NA −N−
A

= 0.1 (28)

Additionally, we know that p0 can be expressed as:

p0 = Nv (T ) · e−
Ef−Ev

kT (29)
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Since only 10% of the dopants are not ionized, we can justify (even if somewhat
generously) the approximation proposed in the hint of this exercise Eq. 23:

NA −N−
A

NA
=

1

1 + 1
βa

· e
Ef−EA

kT

= 0.1 ⇐⇒ 1

βa
· e

Ef−EA
kT = 9 (30)

1

βa
· e

Ef−EA
kT ≫ 1 ⇒ NA −N−

A ≈ βaNA · e−
Ef−EA

kT (31)

Now we rewrite Eq. 28 by substituting the results from Eq. 29 and Eq. 31:

NA −N−
A

p0 +NA −N−
A

=
βaNA · e−

Ef−EA
kT

Nv (T ) · e−
Ef−Ev

kT + βaNA · e−
Ef−EA

kT

(32)

Dividing by the numerator:

NA −N−
A

p0 +NA −N−
A

=
1

Nv(T )
βaNA

· e−
EA−Ev

kT + 1
= 0.1 (33)

We have now eliminated the Fermi level from the equation. Next, we expand the
valence band density of states Nv in terms of temperature, as done in previous
exercises, using TR as the reference room temperature where Nv is known:

NA −N−
A

p0 +NA −N−
A

=
1

Nv

βaNA

(
T
TR

) 3
2 · e−

EA−Ev
kT + 1

= 0.1 (34)

Despite all our efforts, this equation remains analytically unsolvable, and there-
fore, a numerical approach is used to determine the solution:

T ≈ 193 [K] (35)
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